Part Number Hot Search : 
G9133 C8051F 25005 MM3Z27VC FDB8878 20007 B4250 01110
Product Description
Full Text Search
 

To Download 10-FY06BIA080MF-M527E58 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FY06BIA080MF-M527E58 preliminary datasheet flowsol 1 bi 650v/80m ? low inductive 12mm flow1 package booster: dual boost topology mosfet 650v/70mohm + sic diode bypass rectifier inverter: h-bridge topology mosfet 650v/80mohm cfd integrated dc-capacitor temperature sensor solar inverter: primary of high efficient hf transformer-based solar inver types 10-FY06BIA080MF-M527E58 tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 41 t c =80c 50 t h =80c 50 t c =80c 76 maximum junction temperature t j max 150 c input boost mosfet ( t1, t2 ) v ds 650 v t h =80c 22 t c =80c 27 t h =80c 78 t c =80c 117 t j max 150 c t p =10ms i dpulse gate-source peak voltage 370 features flow1 12mm housing target applications schematic a i2t-value maximum ratings i fav a 2 s i fsm condition dc current a power dissipation p tot v gs drain to source breakdown voltage dc drain current t j =t j max 30 t j =t j max t p limited by t j max 150 w v w a a 370 t j =25c t j =t j max p tot i 2 t maximum junction temperature i d bypass diode ( d1 , d2 ) pulsed drain current forward current per diode surge forward current power dissipation per diode 1 revi sion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition input boost diode ( d3 , d4 ) t h =80c 20 t c =80c 24 t h =80c 46 t c =80c 70 h-bridge mosfet ( t3 , t4 , t5 , t6 ) t h =80c 21 t c =80c 26 t h =80c 84 t c =80c 128 h-bridge body diode t h =80c 50 t c =80c 50 50 140 t h =80c 84 t c =80c 128 dc link capacitor ( c1 ) thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm tc=25c t j =25c t j =t j max 650 150 t j =25c v rrm i frm t j max power dissipation per diode i f p tot c a v a w t p limited by t j max dc drain current i d i dpulse 650 150 30 a power dissipation a a 600 57 t j =t j max c v w v t j =t j max t j =t j max t p limited by t j max t j max peak repetitive reverse voltage dc forward current repetitive peak forward current maximum junction temperature pulsed drain current gate-source peak voltage vgs maximum junction temperature i f maximum junction temperature drain to source breakdown voltage v ds p tot w repetitive peak forward current v rrm t j max p tot power dissipation peak repetitive reverse voltage dc forward current i frm t j =t j max 175 t p limited by t j max t j =t j max v a c v max.dc voltage v max 630 -40?+(tjmax - 25) c storage temperature t stg -40?+125 c clearance insulation voltage creepage distance t op operation temperature under switching condition tc=25c 137 2 revi sion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1,18 1,21 t j =125c 1,17 t j =25c 0,91 t j =125c 0,80 t j =25c 0,01 t j =125c 0,01 t j =25c 0,05 t j =125c thermal resistance chip to heatsink per chip r thjh 1,40 thermal resistance chip to case per chip r thjc 0,92 t j =25c 78 t j =125c 127 t j =25c 2,5 3 3,5 t j =125c t j =25c 100 t j =125c t j =25c 1000 t j =125c t j =25c 22 t j =125c 21 t j =25c 4 t j =125c 4 t j =25c 105 t j =125c 110 t j =25c 6 t j =125c 5 t j =25c 0,07 t j =125c 0,08 t j =25c 0,00 t j =125c 0,01 t j =25c 170 t j =125c t j =25c t j =125c t j =25c t j =125c thermal resistance chip to case per chip r thjc 0,60 tj=25c 1,24 1,8 t j =125c 1,34 t j =25c 50 t j =125c t j =25c 25 t j =125c 22 t j =25c 8 t j =125c 9 t j =25c 0,14 t j =125c 0,20 t j =25c 0,02 t j =125c 0,05 di ( rec ) max t j =25c 8216 /d t t j =125c 7261 thermal resistance chip to heatsink per chip r thjh 2,06 thermal resistance chip to case per chip r thjc 1,36 20 400 8 20 10 rgon=2 ? f=1mhz rgon=2 ? 0 100 0 400 10 480 650 20 10 r ds(on) i dss input boost mosfet ( t1 , t2 ) reverse transfer capacitance gate to source charge t f fall time turn-off energy loss per pulse input capacitance e on q gs thermal resistance chip to heatsink per chip q g t rr i rrm v f i rm e rec zero gate voltage drain current forward voltage input boost diode ( d3 , d4 ) gate threshold voltage gate to source leakage current reverse current turn on delay time rise time turn off delay time value conditions c iss r thjh c oss c rss thermal grease thickness 50um = 1 w/mk 0 t d(on) rgoff=2 ? characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t bypass diode ( d1 , d2 ) 35 35 35 k/w v v ? ma 1600 i r 20 tbd. 0,90 215 26,3 20 tj=25c static drain to source on resistance q gd 10 output capacitance gate to drain charge e off total gate charge t r t d(off) turn-on energy loss per pulse reverse leakage current peak recovery current peak rate of fall of recovery current reverse recovery charge thermal grease thickness 50um = 1 w/mk rgon=2 ? reverse recovery time q rr reverse recovered energy 400 10 thermal grease thickness 50um = 1 w/mk 85 3900 20 nc a ns k/w mws mws c pf a/ s ns na v na i gss 0,00176 v (gs)th m ? v a k/w 3 revisio n: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 96 t j =125c 164 t j =25c 3,5 4 4,5 t j =125c t j =25c 100 t j =125c t j =25c 1000 t j =125c t j =25c 355 t j =125c 307 t j =25c 149 t j =125c 165 t j =25c 94 t j =125c 98 t j =25c 4 t j =125c 5 t j =25c 2,24 t j =125c 3,73 t j =25c 0,01 t j =125c 0,01 thermal resistance chip to case per chip r thjc 0,55 t j =25c 1,18 t j =125c 1,09 t j =25c 13 t j =125c 24 t j =25c 122 t j =125c 216 t j =25c 0,96 t j =125c 2,85 di ( rec ) max t j =25c 1469 /d t t j =125c 2749 t j =25c 0,03 t j =125c 0,07 thermal resistance chip to heatsink per chip r thjh 0,83 thermal resistance chip to case per chip r thjc 0,55 650 400 480 25 400 mws k/w ? nf 47 22000 +5 20 26,3 20 43 v ds =v gs 0 0,00176 0 20 0/10 10 10 0 f=1mhz thermal grease thickness 50um = 1 w/mk q gs t d(on) r ds(on) i dss rgon=128 ? c rss v (gs)th i gss t r t d(off) e on v f i rrm reverse recovery energy diode forward voltage q rr t rr peak reverse recovery current h-bridge body diode e rec reverse recovery time reverse recovered charge peak rate of fall of recovery current q gd thermal resistance chip to heatsink per chip reverse transfer capacitance c iss c oss output capacitance pf ns tbd. mws 5030 215 k/w 120 nc v na m ? fall time t f total gate charge input capacitance gate to drain charge gate to source charge turn-off energy loss per pulse turn-on energy loss per pulse e off q g static drain to source on resistance h-bridge mosfet ( t3 , t4 , t5 , t6 ) turn off delay time rise time gate to source leakage current turn on delay time zero gate voltage drain current gate threshold voltage 0,83 r thjh 25 10 mw/k r/r deviation of r25 power dissipation constant power dissipation p % mw 200 2 rated resistance r thermistor c value r100=1486 ? rgoff=2 ? dc link capacitor ( c1 ) c 43 tj=25c a/ s v ns c a na tj=25c tj=25c tj=100c tj=25c -5 b-value b (25/50) tol. 3% thermal grease thickness 50um = 1 w/mk tj=25c 3996 tj=25c b-value b (25/100) tol. 3% k vincotech ntc reference tj=25c b 3950 k rgon=128 ? 170 tj=25c 4 revisio n: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 0 v to 20 v in steps of 2 v v ge from 0 v to 20 v in steps of 2 v figure 3 mosfet figure 4 fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v h-bridge typical output characteristics 0 10 20 30 40 50 60 70 0246810 v ce (v) i c (a) 0 5 10 15 20 25 30 02468 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 0246810 v ce (v) i c (a) 0 20 40 60 80 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c 5 revis ion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c r gon = 128 ? v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 128 ? i c = 20 a r goff = 2 ? figure 7 fwd typical reverse recovery energy loss as a function of collector current e rec = f(i c ) with an inductive load at t j = 25/125 c v ce = 400 v v ge = 10 v r gon = 128 ? h-bridge e on high t e off high t e on low t e off low t 0 2 4 6 8 0 10203040 i c (a) e (mws) e off high t e off low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 10203040 r goff ( ? ) e (mws) e rec high t e rec low t 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0 10203040 i c (a) e (mws) 6 revis ion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 128 ? i c = 20 a r goff = 2 ? figure 11 fwd typical reverse recovery time as a function of collector current t rr = f(ic) at t j = 25/125 c v ce = 400 v v ge = 10 v r gon = 128 ? h-bridge t doff t f t don t r 0,00 0,01 0,10 1,00 0 10203040 i c (a) t (ms) t doff t f 0,00 0,01 0,10 1,00 0 10203040 r g ( ? ) t (ms) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 10203040 i c (a) t rr (ms) 7 revis ion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 13 fwd typical reverse recovery charge as a function of collector current q rr = f(i c ) at at t j = 25/125 c v ce = 400 v v ge = 10 v r gon = 128 ? figure 15 fwd typical reverse recovery current as a function of collector current i rrm = f(i c ) at t j = 25/125 c v ce = 400 v v ge = 10 v r gon = 128 ? h-bridge i rrm high t i rrm low t 0 5 10 15 20 25 30 0 10203040 i c (a) i rrm (a) q rr high t q rr low t 0 1 2 3 4 0 10203040 i c (a) q rr (mc) 8 revis ion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 17 fwd typical rate of fall of forward and reverse recovery current as a function of collector current di 0 /dt,di rec /dt = f(ic) at t j = 25/125 c v ce = 400 v v ge = 10 v r gon = 128 ? figure 19 mosfet figure 20 fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,83 k/w r thjh = 0,83 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03 4,8e+00 0,03 4,8e+00 0,10 1,1e+00 0,10 1,1e+00 0,33 2,3e-01 0,33 2,3e-01 0,26 8,5e-02 0,26 8,5e-02 0,08 1,3e-02 0,08 1,3e-02 0,04 1,0e-03 0,04 1,0e-03 h-bridge t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di o /dt t 0 500 1000 1500 2000 2500 3000 0 10203040 i c (a) di rec / dt (a/ms) t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 9 revis ion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 21 mosfet figure 22 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 c t j = 150 c h-bridge 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) 10 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 25 mosfet figure 26 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 43 a th = 80 oc v ge = 15 v t j =t jmax oc h-bridge v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10m s 100m s dc 1 0 0 1 0 2 4 6 8 10 0 50 100 150 200 q g (nc) v ge (v) 120v 480v 11 revision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 1 boost mosfet figure 2 boost mosfet typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v gs from 0 v to 20 v in steps of 2 v v gs from 0 v to 20 v in steps of 2 v figure 3 boost mosfet figure 4 boost fwd typical transfer characteristics typical diode forward current as i d = f(v gs ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ds = 10 v input boost 0 20 40 60 80 02468 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 0123456 v gs (v) i d (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0246810 v ce (v) i c (a) 0 20 40 60 80 024681 0 v ce (v) i c (a) 12 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 5 boost mosfet figure 6 boost mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 2 ? i d = 20 a r goff = 2 ? figure 7 boost fwd figure 8 boost fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 2 ? i d = 20 a r goff = 2 ? input boost e rec high t e rec low t 0 0,01 0,02 0,03 0,04 0,05 0 10203040 i c (a) e (mws) e rec high t e rec low t 0 0,01 0,02 0,03 0,04 0 5 10 15 20 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0,03 0,06 0,09 0,12 0,15 0 10203040 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,00 0,05 0,10 0,15 0,20 0,25 0 5 10 15 20 r g ( ) e (mws) 13 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 9 boost mosfet figure 10 boost mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 2 ? i c = 20 a r goff = 2 ? figure 11 boost fwd figure 12 boost fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 20 a r gon = 2 ? v gs = 10 v input boost t doff t f t don t r 0,001 0,01 0,1 1 0 10203040 i d (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 r g ( ) t ( s) t rr high t t rr low t 0 0,003 0,006 0,009 0,012 0,015 0 5 10 15 20 r gon ( ) t rr ( s) t rr high t t rr low t 0 0,002 0,004 0,006 0,008 0,01 0 10203040 i c (a) t rr ( s) 14 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 13 boost fwd figure 14 boost fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =20 a r gon = 2 ? v gs =10 v figure 15 boost fwd figure 16 boost fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 20 a r gon = 2 ? v gs = 10 v input boost i rrm high t i rrm low t 0 10 20 30 40 0 5 10 15 20 r gon ( ) i rrm (a) q rr high t q rr low t 0 0,05 0,1 0,15 0,2 0 5 10 15 20 r gon ( ) q rr ( c) i rrm high t i rrm low t 0 5 10 15 20 25 30 0 10203040 i c (a) i rrm (a) q rr high t q rr low t 0,00 0,05 0,10 0,15 0,20 0 10203040 i c (a) q rr ( c) 15 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 17 boost fwd figure 18 boost fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =20 a r gon = 2 ? v gs =10 v figure 19 boost mosfet figure 20 boost fwd igbt/mosfet transient thermal impeda nce fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,90 k/w r thjh = 2,06 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 3,43e-02 5,75e+00 3,27e-02 9,23e+00 1,09e-01 1,04e+00 1,23e-01 1,09e+00 4,48e-01 1,90e-01 5,18e-01 1,63e-01 1,86e-01 6,29e-02 7,80e-01 5,62e-02 8,11e-02 1,23e-02 3,95e-01 1,25e-02 4,45e-02 1,06e-03 2,09e-01 2,51e-03 input boost 0 2000 4000 6000 8000 10000 12000 14000 0 5 10 15 20 r gon ( ) di rec / dt (a/ s) di 0 /dt di rec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 2000 4000 6000 8000 10000 0 10203040 i c (a) di rec / dt (a/ s) di 0 /dt di rec /dt 16 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 21 boost mosfet figure 22 boost mosfet power dissipation as a collector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 oc t j = 150 oc v gs = 10 v figure 23 boost fwd figure 24 boost fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc input boost 0 50 100 150 200 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) 17 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 25 boost mosfet figure 26 boost mosfet safe operating area as a function gate voltage vs gate charge of drain-source voltage i d = f(v ds )v gs = f(qg) at at d = single pulse i d = 20 a t h = 80 oc v gs = 10 v t j =t jmax oc input boost v ds (v) i d (a) 10 3 10 0 10 -1 10 1 10 2 10 3 10 0 10us 100us 1ms 10ms 100ms dc 10 2 10 1 0 2 4 6 8 10 0 50 100 150 200 qg (nc) u gs (v) 120v 480 v 18 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 1,397 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc bypass diode 0 10 20 30 40 50 60 0 0,3 0,6 0,9 1,2 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) 19 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? 20 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet t j 125 c r g on 128 ? r goff 2 ? figure 1 h-bridge mosfet figure 2 h-bridge mosfet turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 10 v v ge (100%) = 10 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 20 a i c (100%) = 20 a t doff = 0,10 s t don = 0,31 s t eoff = 0,13 s t eon = 0,98 s figure 3 h-bridge mosfet figure 4 h-bridge mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 20 a i c (100%) = 20 a t f = 0,01 s t r = 0,16 s switching definitions h-bridge mosfet general conditions = = = i c 1% v ce 90% v ge 90% -75 -50 -25 0 25 50 75 100 125 -0,2 -0,15 -0,1 -0,05 0 time (us) % t doff t eof f v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 250 3,8 4 4,2 4,4 4,6 4,8 5 time(us) % i c v ce t eon v g e fitted i c 10% i c 90% i c 60% i c 40% -50 -25 0 25 50 75 100 125 -0,075 -0,0725 -0,07 -0,0675 -0,065 -0,0625 -0,06 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 250 4,1 4,2 4,3 4,4 4,5 4,6 4,7 time(us) % t r v ce i c 21 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 5 h-bridge mosfet figure 6 h-bridge mosfet turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 8,05 kw p on (100%) = 8,05 kw e off (100%) = 0,01 mj e on (100%) = 3,68 mj t eoff = 0,13 s t eon = 0,98 s figure 7 h-bridge mosfet figure 8 h-bridge fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 400 v v geon = 10 v i d (100%) = 20 a v c (100%) = 400 v i rrm (100%) = -24 a i c (100%) = 20 a t rr = 0,21 s q g = 145,99 nc switching definitions h-bridge mosfet i c 1% v ge 90% -50 0 50 100 150 200 -0,2 -0,15 -0,1 -0,05 0 time (us) % p off e of f t eoff v ce 3% v ge 10% -50 0 50 100 150 200 250 3,8 4 4,2 4,4 4,6 4,8 5 time(us) % p on e on t eon -10 -5 0 5 10 15 -10 10 30 50 70 90 110 130 150 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 4,15 4,3 4,45 4,6 4,75 time(us) % i d v d fitted 22 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet figure 9 h-bridge fwd figure 10 h-bridge fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 20 a p rec (100%) = 8,05 kw q rr (100%) = 2,74 c e rec (100%) = 0,05 mj t qrr = 0,43 s t erec = 0,43 s switching definitions h-bridge mosfet t qrr -150 -100 -50 0 50 100 150 4,2 4,4 4,6 4,8 5 time(us) % i d q rr -25 0 25 50 75 100 125 150 4,2 4,4 4,6 4,8 5 time(us) % p rec e r ec t erec 23 rev ision: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FY06BIA080MF-M527E58 m527e58 m527e58 outline pinout pins 3,4,9,12,27,34 are not connected. ordering code & marking ordering code and marking - outline - pinout 24 revi sion: 1 copyright by vincotech
10-FY06BIA080MF-M527E58 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. 25 revis ion: 1 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-FY06BIA080MF-M527E58

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X